

## IPAL – LIAMA PEPS Project

Multiscale crowds





Workshop AUR@, Singapore, Sept 2012

#### History

- November 2011
  - T. Corpetti and D. Racoceanu's first meeting at AUR@ workshop, Hanoi
- December 2011
  - Visit of T. Corpetti at IPAL (supported by LIAMA and IPAL)
- □ February 2012
  - 6 months visit of N. Courty (IRISA, France) at LIAMA
  - Submission of the "Multiscale crowds" project
- April 2012
  - Project acceptance
- May 2012
  - Visit of N. Courty at IPAL
- □ June 2012
  - Visit of A. Fagette at LIAMA

#### History

- June July 2012
  - Training of C. Monin in the context of the project
- June 2012 June 2013
  - □ Training of T. Kensicher in the context of the project
- August 2012
  - Acceptance of the article AGORASET: a dataset for crowd video analysis to ICPR workshop on Pattern Recognition and Crowd Analysis
- □ September December 2012
  - Training of S. Garnier in the context of the project
- October 2012
  - Attendance of A. Fagette at the Human Activity and Vision Summer School
  - Meeting in France of all investigated people

# History

- 📮 In less than one year:
  - 1 accepted project
  - 5 international visits between Beijing, Paris and Singapore
  - 🔼 More than 6 meetings
  - 1 summer school
  - 💶 1 publication

# Goals of the project

- Multiscale analysis and interpretation of crowd phenomena
- Rely on fluid mechanics for the representation of such crowds



# People involved

LIAMA

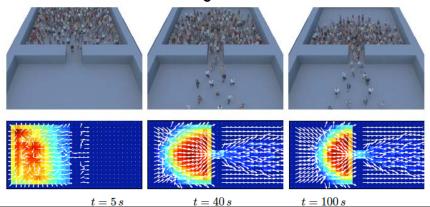
- □ Nicolas Courty (head)
- □ Thomas Corpetti
- □ Pascal Zille (PhD)

IPAL

- □ Daniel Racoceanu
- Antoine Fagette (PhD)

### Project into details

- Crowd analysis has many interesting applications:
  - security (crowd monitoring, abnormal event detection, etc.)
  - environment management
  - entertainment (cinema, video games, etc.)
  - social sciences
  - etc.
- □ Two main approaches:
  - Agent based: a set of pedestrians with individuals rules
  - Continuum-based: the crowd is driven by a continuous flow


# Agent-based approaches

- □ Each **pedestrian** has its **own characteristic** related to its objective, speed, influence and social behavior.
- □ The crowd is simulated by putting together a large number of agents.
  - Advantages: simple to implement, easy to add new rules, etc.
  - Drawbacks : sometimes lack of realism, time computation

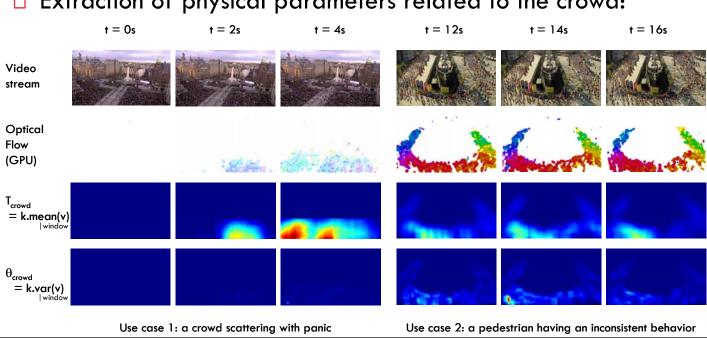


### Continuum-based approaches

- □ The crowd is seen as a whole and is driven by a continuous flow
- □ It is simulated using fluid mechanics laws (transport equation, etc.)
  - Advantages: time computation does not depend on the density, can simulate a large variety of flows
  - Drawbacks : no individual reasoning



### Our project


- Mix continuous and agent representations to take advantage of both techniques
- Main topics:
  - 1 Extract physical parameters related to the crowd (velocity and temperature in particular) using techniques taken from fluid flow analysis in images
  - 2 Work on the multi-scale aspect (the notion of pedestrian/flow is closely related to the notion of scale) using diffusion maps techniques
- Technical constraint: use of both CPU and GPU technologies

## Complementary skills

- □ LIAMA, TIPE group
  - Fluid flow analysis from image sequences
  - Crowd representation and analysis using fluid mechanics
- IPAL
  - Image analysis and understanding

#### First results

□ Extraction of physical parameters related to the crowd:



#### First results

 $\hfill\Box$  Highlighting of the multiscale approach problem related to the evaluation of the crowd temperature  $\theta_{crowd}$ 



#### First results

□ AGORASET: Generation of a synthetic dataset that will be used as ground truth to validate the results of the project.





Shibuya (Tokyo), one of the most famous crowd scene studied in crowd analysis.

A simulation (left) and a real view (right).

# Thank you

